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Abstract-The velocity field equations are set up for a standard rigid-plastic material. They allow
a direct detennination of the velocity field. and therefore correspond to the Navier-Stokes equations
of a Newtonian fluid. Under conditions of plane strain or axisymmetric defonnation. the velocity
field equations lead. using the Levy-Huber-von Mises flow law. to the principal lines-i.e. to the
trajectories of the principal strain-rates as characteristics. However. an incipient strain localization.
combined with a velocity discontinuity. cannot be expected to occur along a principal line. Rather.
a degeneration of the velocity field equations. shown to exist for certain rate-sensitive materials.
might be responsible for such a localization effect.

I. INTRODUCTION

Velocity field equations are differential equations which allow a direct determination of the
velocity field in a continuum. For a Newtonian fluid. the velocity field equations are the
Navier-Stokes equations. They are equivalent to the Navierequations ofelasticity, provided
that the displacements arc considered instead of the velocities. For an elastic-plastic con­
tinuum with strain sensitivity. the velocity field equations have been given by Lippmann
(1986) with respect to the actmtl configuration of the body.

In the present paper. the velocity field equations will be derived for an incompressiblet
rigid-plastic material. with or without strain hardening. rate hardening or temperature
sensitivity. again with respect to the actual configuration. They become. as usual. partial
differential equations of the second order in the velocity terms. and of the first order in the
hydrostatic stress. The characteristics must therefore be defined as lines or interfaces across
which either the first order spatial derivatives of the hydrostatic stress or the second order
spatial derivatives of the velocity. i.e. the first order spatial derivatives of the strain rates.
may become nonunique or discontinuous. even if the hydrostatic stress itself or the first
order derivatives of the velocities are continuous. If a permanently continuous field ofstrain
rates is assumed, then the strain field and the equivalent strain are also continuous. This
continuity holds also for the temperature field, for, its gradient may be discontinuous only
across jump interfaces of the velocity (Becker et al.• 1987). Velocity jumps will not be
admitted in the following sections. The temperature and the pre-strain will therefore be
treated as prescribed continuous fields. although they may be initially unknown.

As an application. the characteristics will be determined for plain strain as well as for
axially symmetric plastic flow. based on the U:vy-Huber-von Mises flow law. In both cases,
the characteristics are the trajectories of principal strain rates-the so-called principal lines.
This is in complete contrast to classical plasticity. where the plane strain characteristics are
the slip lines. while no characteristics exist for axisymmetric deformation (Parsons. 1956).
This has nothing to do with the observation that-on the basis of Tresca's yield condition
and the associated flow rule-the principal lines, in addition to the slip lines, can in certain
cases actually become the characteristics (cf. Lippmann. 1981).

The difference may formally be explained as follows.
In classical plane strain plasticity without any strain rate sensitivity. the stress field and

the velocity field are uncoupled. The slip line characteristics then refer primarily to the
stress field. The equations for the velocities cannot be set up prior to the determination of
the stress field. and they are of first order only. Therefore, their characteristics, which are

t For compressible materials. the velocity field equations assume a similar fonn-see Section 3 below.
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again the slip lines. are related to the first spatial derivatives of the velocity. i.e. to the strain
rates themselves.

On the other hand for a strain rate sensitive material. slip lines are no longer charac­
teristics of the velocity field in the above sense. because the shear stress along a slip line is
the shear yield limit k. which must. for reasons of equilibrium. be continuous across the
slip line. However. in general it cannot be. because it depends on the strain rate. which may
be different on either side of a characteristic. Exceptions would require a special form of
the strain and strain rate sensitivity of the yield limit. showing. for instance. strain softening
or rate softening. Let us consider the even more general case in which the characteristic
represents also a surface of velocity discontinuity such that the corresponding equivalent

!1 n
strain-rate. i.e. ).. is infinite. The equivalent strain f; may be infinite or finite. depending on
whether or not the discontinuity surface is a material surface. The condition for the
possibility of the appearance of such a surface may then be written as

Ll °0 2 2
kU. i. (}) = [kU. f:. (}) = jkU. f-. (}).

where () is the (continuous) temperature. the superscripts I and 2 refer to the two sides of
the surface. and the terms inside the brackets [... j may be omitted if there is no discontinuity
of the velocity itself.

The above condition renects the situation where both sides of the interface arc in the
plastic state. If. for instance. side No. I or 2 is rigid. then the conditions

l °0 ~~ It 0l) ~

k(O./:.IJ) ~ [k().,,:.IJ) = Ik()../:.IJ) and k().. I:. IJ)[ = k().,,:. 0)1 ~ k(O.I:,/J)

would hold separately or jointly. respectively.
However. if at a surface of an incipient velocity discontinuity the above conditions

cannot be fullilled. the material must separate. thus allowing for diflcrent laws to hold at
the interface (e.g. frictional laws. etc.). This sort of material separation has indeed been
observed. e.g. at the boundary of a (rigid) dead metal zone in the metal extrusion process;
sec Becker et al. (1985. Fig. 7). Generally speaking. material interfaces of velocity dis­
continuity also represent interfaces of strain localization. which arc themselves of interest.

Therefore. at the end of this paper the question of whether the characteristics of the
velocity field equations might be considered as lines along which velocity discontinuities
could be initiated will be discussed. This was indeed shown to be the case under plane
stress conditions where, in uniaxial tension, the characteristics actually coincide with the
localization bands (Lippmann, 1986). However. for plane strain or axial symmetry, it is
doubtful that principal line characteristics have anything to do with velocity discontinuities.

Instead, for certain types of rate-sensitive material, another line or region in addition
to the principal lines is found along which the equations degenerate in such a way that
every direction becomes a characteristic direction. It could be that this kind of degeneration
indeed leads to an incipient velocity jump.

2. BASIC NOTATION

The summation rule will be applied, the actual configuration envisaged, and the
following basic quantities introduced: x', arbitrary curvilinear coordinates fixed in the
space: ')' (~/Dx'; I" covariant derivative with respect to x'; ()~, Kronecker symbol: 1", point
velocities; )." =)\ = ~(1",I" +1"1,), strain rates; a', = a,', Cauchy stresses; a = a',i3.
hydrostatic stress: .1''. = .1',' = a', - () La. deviator of the Cauchy stress; J;, static volume
forces; t, time with to, initial value: 0, temperature: r = n;J. OJ, (uniaxial) yield limit.
in which; is the equivalent strain rate, dclined using ;\ = a\i.,' = r;, the rate of work
dissipated per unit volume. and i: = i:o +S: ; dt. the equivalent strain with f:{j, the initial

"value.
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The yield condition may be expressed in a standard manner as follows (Lippmann,
1981) :

F being a sufficiently smooth. symmetric and homogeneous function according to

F(S/k) = F(Sk i )

F('XS/k) = 'XF(sj/c); 'X ~ O.

The associated yield rule then reads

If the equivalent strain rate is expressed in terms of

(I)

the function G is easily seen to be sufficiently smooth, symmetric and homogeneous as well.
Following Hill (1987), we have

(2)

3. VELOCITY FIELD EQUATIONS OF RIGID·PLASTIC FLOW

Substituting eqn (2) into thc static equilibrium cquations with volume forces J~ acting,
I.c.

(3)

observing that

and introducing in addition to the hydrostatic stress (J the new variables

then using eqn (I), the following equations of plastic flow-to be called velocity field
equations-are obtained:

(
DYIDO DYIDe ) iJG

Nk = -y-O!j+ -y-f.\j iJ)./+hI Y

D q _ I iJG iJG a2G. h aYla;:
Ie p - I iJ)./ iJ)./ + '2)./ [9./' = -y-.

They must be complemented by the incompressibility condition. i.e.

(4)

(5)

(6)



which allows us to eliminate one of the variables, and by a certain number of independent
compatibility equations. i.e.

(7)

such that there are altogether as many differential equations as there are variables. l'P q

and a.
For the Huber-von Mises flow law. the equivalent rate of strain may be expressed in

terms of

and the coefficients from eqn (5) read as follows:

(8)

It should be added that for a compressible rigid-plastic material the velocity field equations
assume a similar form. and can be derived as follows. In the yield condition. the yield rule
and eqns (1) and (3). the stress deviator s' I has to be replaced by the stress tensor rT', itself;
while in eqns (3) and (4). the hydrostatic stress (J has to be removed as an independent
variable.

4. CHARACTERISTICS

For plane plastic flow in Cartesian coordinates. Xl = x and x 2 = y there are two
independent compatibility conditions-·eqn (7) ·_··which can by virtue or eqn (6) be written
as

(,1,12=uI21,; 1'2 112=-1"111'

After eliminating ('22 with the aid oreqn (6) and lowering, in the given Cartesian coordinates,
all indices, the above equations are rewritten, together with the two relevant velocity field
eq uations (4), in matrix notation, as

RW,I +SW,2 = -N (9)

['"] P]w= ( 12 N = jG
l' 21

(J N,

R=

S=

-I

o
m)'12), II

I +m)'I2)'21

o
o

m). (2)' 12

m).,J22

o
o

m)'2')'11

m)'21)'21

o
I

I +m)'21)'12

m)'21)'22

3G~2y]

jJ
In order to find the angle:x between a characteristic and, for instance, the x' direction, the
characteristic equation is written (cf. Lippmann. 1981) as
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D(x) = det (R cos x-S sin %) = O.
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The solutions are:

tan (2%) = -2A.dP", -A.d (twofold).

% arbitrary if m = O. i.e. hG = I.

(lOa)

(lOb)

The principal lines therefore represent a pair of families of characteristics. each counting
twofold. In addition. if condition (lOb) is fulfilled. then. because of eqn (5) and as G = X.
the following relation holds:

o( Y/X)/oX = o. (II)

Equation (II) defines a point. a line or a region of degeneration of the velocity field
equations where each direction is a characteristic direction. Of course. this holds true also
for the direction of a degeneration line itself.

In the event of an axially symmetric rigid-plastic deformation. the coordinates may
be identified with the axial coordinate. Xl = =. the radius. x 2 = r, or the azimuthal angle.
x) = t/J, respectively. Since v) == 0 and Vi.) == v 2

,) == O. the velocity field equations depend
on v t and v2 only. whereas the covariant derivatives

where r/k are the Christoffel symbols. differ from the partial derivatives only by undiffer­
entiated terms. Therefore. if in eqns (4). (6) and (7) the covariant derivatives are replaced
by the partial ones. and if now besides (J the variables I,k J = I,k ,J are introduced. the matrix
equations (10) remain valid with a modified right-hand side. This does not affect the
calculation of the characteristic directions. so eqns (10) and (II) remain valid also,

5. CONCLUSIONS

The velocity field equations have been formulated for a standard rigid-plastic incom­
pressible material. They hold in a similar form also for compressible materials. and are
valid not only for ideally plastic or strain hardening plastic solids. but also for strain rate
and temperature sensitive bodies.

The velocity field equations allow. together with the equations of heat generation and
heat convection/conduction (cf. Becker et al.. 1985. 1987). to determine the velocity
field and the hydrostatic stress directly. without considering the stress components, The
characteristics presented under conditions of plane strain or axial symmetry therefore have
nothing to do with the corresponding classical slip line or principal line characteristics.

In all cases there exist two families of characteristics. each counting twofold-i.e. as
many families as there are kinematic and static unknowns in the problem. Although the
so-called characteristic equations. valid along the characteristics themselves. have not been
determined. one may assume that the mechanical part of the problem (without the thermal
part) is hyperbolic. As this holds already at the first instant of the deformation. the
characteristics do not supply any criterion for the onset of strain localization which. by
general experience. does not start at the very beginning. Also, because the characteristics
were found to coincide with the principal lines, i.e. with the trajectories of principal strain­
rate. they can hardly correspond to jump lines for the velocity or for the displacement.
which should both have a jump component parallel to the line.
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In addition. another line. called the degeneration line. may exist. along which every
direction is a characteristic direction. This line may also be a point or an entire region. It
does not form before the strain rate reaches a certain threshold value. given by eqn (II).

This threshold may indeed indicate the onset of localization. although it is not clear whether
it is sufficiently realistic for technological materials. Let us illustrate the situation by
comparing two very similar (temperature-independent) hardening laws often used in metal
plasticity:

where Yo. T. fJ and J.L are positive constants. Both laws differ for small strains or strain
rates only. i.e. in a regime where the experimental determination of the parameters is
difficult anyway. Nevertheless. they show basically different behaviour with respect to the
degeneration criterion (II) which now becomes

The first relation can easily be fulfilled if J.L > I. while the second is valid only if It = I.
However. in that case it holds identically. such that it loses its significance as a criterion
(this holds true in particular for a Newtonian fluid).
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